Name	Period
Kinetic and Potentia $E_K = \frac{1}{2} \text{ mv}^2$ ($\frac{1}{2}$ x mass x velocity x velocity)	al Energy
$E_p = mgh$ (or wh) (mass x gravity x height) (gravi	$ty = 9.8 \text{ m/s}^2)$
1. If a ball weighs 6 kg and is traveling at 1 kps (kilometer	er per second), what is its kinetic energy?
2. A 10 kg weight is held 2 meters in the air. What is its pe	otential energy?
3. Which has more potential energy, a 5 kg ball or a 10 kg	g ball held above the ground at 2 meters?
4. A 20 kg person runs at 2 mps (meters per second). Wha	nt is that person's kinetic energy?
5. This isn't as hard as it looks if you do it step by step. A mps (meters per second). How high does he go into the air	-
Step 1 - What is the kinetic energy? (write it)	
Step 2 - Let $E_K = E_P$ (Place the number from step 1 into the potential energy formula.)	= mgh
Step 3 - Divide by mass and gravity	
Finally - What is the h?	
Determine whether the objects in the following problems kinetic energy is the energy of motion and potential energy position. Then, choose the correct formula to use:	
6. You serve a volleyball with a mass of 2.1 kg. The ball l ball has energy. Calculate i	
7. A baby carriage is sitting at the top of a hill that is 21 m baby weighs 12 N. The carriage has	

8. A car is traveling with a velocity of 40 m/s and has a mass of 1120 kg. The car has energy. Calculate it.
9. A cinder block is sitting on a platform 20 m high. It weighs 79 N. The block has energy. Calculate it.
10. There is a bell at the top of a tower that is 45 m high. The bell weighs 190 N. The bell has energy. Calculate it.
11. A roller coaster is at the top of a 72 m hill and weighs 966 N. The coaster (at this moment) has energy. Calculate it.
This graph shows a ball rolling from A to G. The ball starts at point A and rolls to point G. 12. At what letter does the ball have the greatest kinetic energy?
13. Which letter shows the ball when it has the maximum potential energy?
14. Which letter shows the ball when it has the least potential energy?

15. Why is point G slightly lower than point A? In other words, why couldn't the ball go back to the same height at which it started?